Is Granger Causality a Viable Technique for Analyzing fMRI Data?

نویسندگان

  • Xiaotong Wen
  • Govindan Rangarajan
  • Mingzhou Ding
چکیده

Multivariate neural data provide the basis for assessing interactions in brain networks. Among myriad connectivity measures, Granger causality (GC) has proven to be statistically intuitive, easy to implement, and generate meaningful results. Although its application to functional MRI (fMRI) data is increasing, several factors have been identified that appear to hinder its neural interpretability: (a) latency differences in hemodynamic response function (HRF) across different brain regions, (b) low-sampling rates, and (c) noise. Recognizing that in basic and clinical neuroscience, it is often the change of a dependent variable (e.g., GC) between experimental conditions and between normal and pathology that is of interest, we address the question of whether there exist systematic relationships between GC at the fMRI level and that at the neural level. Simulated neural signals were convolved with a canonical HRF, down-sampled, and noise-added to generate simulated fMRI data. As the coupling parameters in the model were varied, fMRI GC and neural GC were calculated, and their relationship examined. Three main results were found: (1) GC following HRF convolution is a monotonically increasing function of neural GC; (2) this monotonicity can be reliably detected as a positive correlation when realistic fMRI temporal resolution and noise level were used; and (3) although the detectability of monotonicity declined due to the presence of HRF latency differences, substantial recovery of detectability occurred after correcting for latency differences. These results suggest that Granger causality is a viable technique for analyzing fMRI data when the questions are appropriately formulated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Insights into Signed Path Coefficient Granger Causality Analysis

Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of "signed path coefficient Granger causality," a Granger-causality-derived analysis method that has been adopted by many fMRI re...

متن کامل

Upsampling to 400-ms Resolution for Assessing Effective Connectivity in Functional Magnetic Resonance Imaging Data with Granger Causality

Granger causality analysis of functional magnetic resonance imaging (fMRI) blood-oxygen-level-dependent signal data allows one to infer the direction and magnitude of influence that brain regions exert on one another. We employed a method for upsampling the time resolution of fMRI data that does not require additional interpolation beyond the interpolation that is regularly used for slice-timin...

متن کامل

Fiber-centered Granger Causality Analysis

Granger causality analysis (GCA) has been well-established in the brain imaging field. However, the structural underpinnings and functional dynamics of Granger causality remain unclear. In this paper, we present fibercentered GCA studies on resting state fMRI and natural stimulus fMRI datasets in order to elucidate the structural substrates and functional dynamics of GCA. Specifically, we extra...

متن کامل

Fiber-Centered Granger Causality Analysis

Granger causality analysis (GCA) has been well-established in the brain imaging field. However, the structural underpinnings and functional dynamics of Granger causality remain unclear. In this paper, we present fiber-centered GCA studies on resting state fMRI and natural stimulus fMRI datasets in order to elucidate the structural substrates and functional dynamics of GCA. Specifically, we extr...

متن کامل

Inference of biological networks using Bi-directional Random Forest Granger causality

The standard ordinary least squares based Granger causality is one of the widely used methods for detecting causal interactions between time series data. However, recent developments in technology limit the utilization of some existing implementations due to the availability of high dimensional data. In this paper, we are proposing a technique called Bi-directional Random Forest Granger causali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013